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Graph Random Walk (RW)
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➢ Input

• Graph 𝑮

• A set of walkers 𝑸, with start vertices

➢ Walking Process

• Each walker select a neighbor of current vertex 

at random

• Move to the selected neighbor

• Repeat until the termination condition is met

➢ Output

• Walking path of walkers in 𝑸



Significance of Graph Random Walk
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Graph random walk is the key operation to extract graph information, 
serving many downstream applications.

 Graph neural network

➢ GNN, GCN, GRN

 Graph ranking

➢ PPR, SimRank

 Graph embedding

➢ DeepWalk, node2vec

Graph  Random Walk

Graph  Information
Applications

Social network analysis Recommendation system

Knowledge graph



Graph Random Walk Algorithms
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➢ RW algorithms differ in the way 
to select neighbor

Unbiased:  each neighbor has the same chance to be selected

Biased

Static graph random walk (SGRW)
Fix transition probability (TP)

Dynamic graph random walk (DGRW)
TP is calculated during runtime
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1~2页说明rw种类、介绍n2v和metapath，重新画图



Dynamic Graph Random Walk
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➢ Static Random Walk

➢ Calculate and store transition probability table in 

advance

➢ Read the transition probability when needed

➢ Suitable for the cases that transition probability stay 

fixed during runtime

➢ Dynamic Random Walk

➢ Scan the edge and calculate transition probability 

during runtime 

➢ Suitable for the cases that transition probability may 

change
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𝑎
, 𝑖𝑓 𝑑𝑖𝑠𝑡 𝑣𝑥, 𝑣𝑡 = 0
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1
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Node2Vec

𝒑 is dependent on runtime states 𝒗𝒕 , 
cannot be computed in advance



Dynamic Sampling on GPU

Limited memory space

➢ Allocate 𝑂(𝑑𝑚𝑎𝑥) memory buffer to store transition probability table

➢ Parallelism is restricted due to space cost

The Twitter Graph [1]
(𝑑𝑚𝑎𝑥 = 3 × 106)
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➢ A single query requires 11.45MB buffer
➢ The number of query is large (i.e. 𝟏𝟎𝟔)
➢ A100 has only 40GB of DRAM

[1]. https://ona-book.org/using-twitter.html

𝑑 denotes the 
vertex degree



80% of total vertices have 

small degrees

Dynamic Sampling on GPU

Load imbalance issues

➢ Workload

• Workload is governed by vertex degree

• Degrees in real-world graph follow power-law distribution

➢ Hardware

• Huge amounts of computing cores exacerbates the imbalance problem
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Our Solution 

➢ FlowWalker: efficient dynamical walks at minimal memory cost

➢ Adopts reservoir sampling to reduce space complexity to 𝑂(1)

➢ High-performance processing engine, which leverages a sampler-centric computation model.
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Reservoir Sampling

➢ Sampling Methods
• Inverse Transform Sampling (ITS)
• Alias Table Sampling (ALS)
• Rejection Sampling (RJS)

➢ Reservoir Sampling
• Pre-processing free
• Diminishes space complexity to O(1)
• High parallelism, easy adapt to GPU

Sampling method ITS ALS RJS RS

Pre-processing O(n) O(n) O(n) -

Sampling O(log n) O(1) O(1)~O(n) O(n)

Space O(n) O(n) O(1) O(1)

No pre-processing 
overhead

Accelerate through 
parallelization

Minimal space cost
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Execution Engine

➢ Sampler-centric computation
• Organize threads into samplers
• Each sampler is an independent worker; barrier free
• A walking query will not be evicted until it completes
• Fetch one task from the task pool when one query completes

➢ Dynamic execution
• Instead of assigning tasks, samplers fetch tasks proactively
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Experiment Setup

11

➢ Baseline

• Skywalker [PACT’ 21] – GPU-based framework

• LightRW [Sigmod’ 23] – FPGA-based dynamic RW framework

• ThunderRW [VLDB’ 21] – CPU in-memory framework

• DGL – widely adopted GNN framework, run in dynamic mode

➢ Environment

• Linux server with 256 GB of DRAM, and 31.5 GB/s of PCI-E bandwidth 

• One A100 (40 GB) GPU, 100 KB shared memory of each SM

• One AMD Alveo U250 FPGA

• One CPU with 16 cores and hyper-threading enabled

➢ Datasets

• 10 read-world datasets, including 4 billion-scale datasets

➢ Applications

• DeepWalk, Personalized PageRank (PPR), Node2Vec, MetaPath

Datasets



Overall Comparison
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➢ FlowWalker is the only framework completing all test cases

➢ Time

• Up-to 92.2x speedup to DGL (GPU), 315.8x speedup to DGL (CPU)

• Up-to 16.4x speedup over LightRW (LRW)

• Up-to 752.2x speedup over ThunderRW (TRW)

• Up-to 72.1x speedup over Skywalker (SW)

➢ Memory

• FlowWalker eliminates auxiliary data structures, reduce the space cost from O(n) to O(1)

• The extra memory cost of FlowWalker is independent of graph size



Case Study
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➢ Friend recommendation GNN in Douyin

➢ Test graph contains 227 million vertices and 2.71 billion edges

➢ FlowWalker reduces the RW time from 35% (3.49 hours) to 3% (13 minutes)
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Load
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Training one epoch



Conclusion

➢ FlowWalker is a memory-efficient and high-performance GPU-based dynamic graph random walk 
framework.

➢ FlowWalker employs the reservoir sampling method.
➢ FlowWalker uses dynamic walking engine and sampler-centric model to enhance performance.
➢ FlowWalker samples graphs at a minimal memory cost while achieves significant performance 

improvements.
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Source code available at github.com/junyimei/flowwalker-artifact
Contact: meijunyi@sjtu.edu.cn

mailto:meijunyi@sjtu.edu.cn


Thanks!
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