
FlowWalker: A Memory-efficient and High-performance
GPU-based Dynamic Graph Random Walk Framework

Junyi Mei1 , Shixuan Sun1 , Chao Li1, Cheng Xu1, Cheng Chen2, Yibo Liu1, Jing
Wang1, Cheng Zhao2, Xiaofeng Hou1, Minyi Guo1 , Bingsheng He3, Xiaoliang Cong2

Shanghai Jiao Tong University1; ByteDance Inc2; National University of Singapore3

1

Graph Random Walk (RW)

2

➢ Input

• Graph 𝑮

• A set of walkers 𝑸, with start vertices

➢ Walking Process

• Each walker select a neighbor of current vertex

at random

• Move to the selected neighbor

• Repeat until the termination condition is met

➢ Output

• Walking path of walkers in 𝑸

Significance of Graph Random Walk

3

Graph random walk is the key operation to extract graph information,
serving many downstream applications.

 Graph neural network

➢ GNN, GCN, GRN

 Graph ranking

➢ PPR, SimRank

 Graph embedding

➢ DeepWalk, node2vec

Graph Random Walk

Graph Information
Applications

Social network analysis Recommendation system

Knowledge graph

Graph Random Walk Algorithms

4

➢ RW algorithms differ in the way
to select neighbor

Unbiased: each neighbor has the same chance to be selected

Biased

Static graph random walk (SGRW)
Fix transition probability (TP)

Dynamic graph random walk (DGRW)
TP is calculated during runtime

2

𝑣1 𝑣2

𝑣3 𝑣4

𝑣5 𝑣6

𝑣0

3

5

4
2 4

0.1
0.15

0.25
0.2

0.1

0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

Initialization

Phase

Selection

Phase 0.1
0.15

0.25
0.2

0.1

0.2

v₁ v₂ v₃ v₄ v₅ v₆

Transition Probability

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔𝒗𝟒

1~2页说明rw种类、介绍n2v和metapath，重新画图

Dynamic Graph Random Walk

5

➢ Static Random Walk

➢ Calculate and store transition probability table in

advance

➢ Read the transition probability when needed

➢ Suitable for the cases that transition probability stay

fixed during runtime

➢ Dynamic Random Walk

➢ Scan the edge and calculate transition probability

during runtime

➢ Suitable for the cases that transition probability may

change

𝑣0

𝑣1

𝑣2

𝑣3

𝑝1

𝑝2

𝑝3

Transition
Probability

𝑣𝑡

Previous visited
vertex

𝑝(𝑣𝑥) = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒𝑥) ×

1

𝑎
, 𝑖𝑓 𝑑𝑖𝑠𝑡 𝑣𝑥, 𝑣𝑡 = 0

1, 𝑖𝑓 𝑑𝑖𝑠𝑡 𝑣𝑥, 𝑣𝑡 = 1
1

𝑎
, 𝑖𝑓 𝑑𝑖𝑠𝑡 𝑣𝑥, 𝑣𝑡 = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Node2Vec

𝒑 is dependent on runtime states 𝒗𝒕 ,
cannot be computed in advance

Dynamic Sampling on GPU

Limited memory space

➢ Allocate 𝑂(𝑑𝑚𝑎𝑥) memory buffer to store transition probability table

➢ Parallelism is restricted due to space cost

The Twitter Graph [1]
(𝑑𝑚𝑎𝑥 = 3 × 106)

6

➢ A single query requires 11.45MB buffer
➢ The number of query is large (i.e. 𝟏𝟎𝟔)
➢ A100 has only 40GB of DRAM

[1]. https://ona-book.org/using-twitter.html

𝑑 denotes the
vertex degree

80% of total vertices have

small degrees

Dynamic Sampling on GPU

Load imbalance issues

➢ Workload

• Workload is governed by vertex degree

• Degrees in real-world graph follow power-law distribution

➢ Hardware

• Huge amounts of computing cores exacerbates the imbalance problem

7

0

0.2

0.4

0.6

0.8

1

1.2

N
u

m
b

e
r

Degree Distribution

Degree Distribution of Twitter Graph

28%

14%

Nodes with highest

degrees comprise 14% of

the total

Our Solution

➢ FlowWalker: efficient dynamical walks at minimal memory cost

➢ Adopts reservoir sampling to reduce space complexity to 𝑂(1)

➢ High-performance processing engine, which leverages a sampler-centric computation model.

8

Sampler Sampler

Sampler Sampler

Query

Query
Query

Query Query

O(1) Reservoir

Sampling

Reservoir Sampling

➢ Sampling Methods
• Inverse Transform Sampling (ITS)
• Alias Table Sampling (ALS)
• Rejection Sampling (RJS)

➢ Reservoir Sampling
• Pre-processing free
• Diminishes space complexity to O(1)
• High parallelism, easy adapt to GPU

Sampling method ITS ALS RJS RS

Pre-processing O(n) O(n) O(n) -

Sampling O(log n) O(1) O(1)~O(n) O(n)

Space O(n) O(n) O(1) O(1)

No pre-processing
overhead

Accelerate through
parallelization

Minimal space cost
9

Execution Engine

➢ Sampler-centric computation
• Organize threads into samplers
• Each sampler is an independent worker; barrier free
• A walking query will not be evicted until it completes
• Fetch one task from the task pool when one query completes

➢ Dynamic execution
• Instead of assigning tasks, samplers fetch tasks proactively

10

Sampler

Sampler

Sampler

Query 1 Query 2 Query 3

Step 1

Step 1

Step 1

Sample Barrier

Step 2

Step 2

Step 2

Sample Barrier

……

Step 1 Step 2 Step 3

Step 1 Step 2 Step 3

Step 1 Step 2 Step 3

Sampler-centricStep-centric

Experiment Setup

11

➢ Baseline

• Skywalker [PACT’ 21] – GPU-based framework

• LightRW [Sigmod’ 23] – FPGA-based dynamic RW framework

• ThunderRW [VLDB’ 21] – CPU in-memory framework

• DGL – widely adopted GNN framework, run in dynamic mode

➢ Environment

• Linux server with 256 GB of DRAM, and 31.5 GB/s of PCI-E bandwidth

• One A100 (40 GB) GPU, 100 KB shared memory of each SM

• One AMD Alveo U250 FPGA

• One CPU with 16 cores and hyper-threading enabled

➢ Datasets

• 10 read-world datasets, including 4 billion-scale datasets

➢ Applications

• DeepWalk, Personalized PageRank (PPR), Node2Vec, MetaPath

Datasets

Overall Comparison

12

➢ FlowWalker is the only framework completing all test cases

➢ Time

• Up-to 92.2x speedup to DGL (GPU), 315.8x speedup to DGL (CPU)

• Up-to 16.4x speedup over LightRW (LRW)

• Up-to 752.2x speedup over ThunderRW (TRW)

• Up-to 72.1x speedup over Skywalker (SW)

➢ Memory

• FlowWalker eliminates auxiliary data structures, reduce the space cost from O(n) to O(1)

• The extra memory cost of FlowWalker is independent of graph size

Case Study

13

➢ Friend recommendation GNN in Douyin

➢ Test graph contains 227 million vertices and 2.71 billion edges

➢ FlowWalker reduces the RW time from 35% (3.49 hours) to 3% (13 minutes)

0 1 2 3 4 5 6 7 8 9 10

Graph-Learn

ThunderRW

FlowWalker

Time (h)

Load
RW
Train

35%

3%

Training one epoch

Conclusion

➢ FlowWalker is a memory-efficient and high-performance GPU-based dynamic graph random walk
framework.

➢ FlowWalker employs the reservoir sampling method.
➢ FlowWalker uses dynamic walking engine and sampler-centric model to enhance performance.
➢ FlowWalker samples graphs at a minimal memory cost while achieves significant performance

improvements.

14

Source code available at github.com/junyimei/flowwalker-artifact
Contact: meijunyi@sjtu.edu.cn

mailto:meijunyi@sjtu.edu.cn

Thanks!

15

